Mapping predictive facilitation in a dragonfly target neuron
نویسندگان
چکیده
منابع مشابه
Spatial facilitation by a high-performance dragonfly target-detecting neuron
Many animals visualize and track small moving targets at long distances-be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below th...
متن کاملNeural mechanisms underlying target detection in a dragonfly centrifugal neuron.
Visual identification of targets is an important task for many animals searching for prey or conspecifics. Dragonflies utilize specialized optics in the dorsal acute zone, accompanied by higher-order visual neurons in the lobula complex, and descending neural pathways tuned to the motion of small targets. While recent studies describe the physiology of insect small target motion detector (STMD)...
متن کاملFacilitation of dragonfly target-detecting neurons by slow moving features on continuous paths
Dragonflies detect and pursue targets such as other insects for feeding and conspecific interaction. They have a class of neurons highly specialized for this task in their lobula, the "small target motion detecting" (STMD) neurons. One such neuron, CSTMD1, reaches maximum response slowly over hundreds of milliseconds of target motion. Recording the intracellular response from CSTMD1 and a secon...
متن کاملDiscrimination of features in natural scenes by a dragonfly neuron.
Flying insects engage in spectacular high-speed pursuit of targets, requiring visual discrimination of moving objects against cluttered backgrounds. As a first step toward understanding the neural basis for this complex task, we used computational modeling of insect small target motion detector (STMD) neurons to predict responses to features within natural scenes and then compared this with res...
متن کاملMechanisms of serotonergic facilitation of a command neuron.
The lateral giant (LG) command neuron of crayfish responds to an attack directed at the abdomen by triggering a single highly stereotyped escape tail flip. Experimentally applied serotonin (5-hydroxytrptamine, 5-HT) can increase or decrease LG's excitability, depending on the concentration, rate, and duration of 5-HT application. Here we describe three physiological mechanisms that mediate sero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physiology
سال: 2013
ISSN: 1664-042X
DOI: 10.3389/conf.fphys.2013.25.00002